Elevate your projects with our cutting-edge drone rental service. Whether you're a professional photographer, farmer, or an enthusiast, our advanced drone fleet is ready for you. Enjoy affordable rental packages, fast delivery, and versatile applications in agriculture, construction, events, and beyond. We simplify drone rental, allowing you to focus on your mission. Explore our latest fleet below and elevate your projects today with our premium drone rental service.
You should consider what chemicals licences you may need when doing drone spraying. These licences are nothing to do with CASA and requirements vary for each state.
Chemicals licences required in NSW
For example in NSW it is the NSW Environment Protection Authority - you’ll need to apply for a RPA applicator pilot licence, which involves doing 2 training units:
AHCCHM307 prepare and apply chemicals to control pest, weeds and diseases. (previously called AHCCHM303).
And AHCCHM304 Transport and store chemicals.
$415.0
Note if you spray normally from tractors etc you likely have already have done these tickets (AHCCHM307 or AHCCHM303 and AHCCHM304). They will be e.g. on your Chemcert card. Just make sure it less than 5 years since it was updated.
You’ll also need a RPA applicator business licence, or be employed by a person holding one . Again, if you have been spraying for a long time from tractors etc you will probably just need to fill out the form for this (not actually have to do a training course).
Note that a pilot is not allowed to discharge pesticide from an aircraft within 150 metres of a dwelling, school, factory or any other public place without the prior written permission of the occupier of the premises.
Roads, travelling stock reserves and State Rail land are excluded from the definition of public places.
The owner of the land on which the pesticide will aerially be applied must get the written permission of the occupier of the dwelling, school, factory or other public place that is within 150 metres of the application area.
EPA details:
List of regional EPA office locations around NSW
02 9995 5959 – ask for the RPA (drone) licencing team.
You need this if you provide aerial spraying services from an RPA, or employ pilots to carry out aerial agricultural spraying from RPA, or in any other case operate (own, lease, borrow) RPA that carry out aerial spraying.
The RPA AAOL application fee as at 1 July 2021 is $841.65 and the licence is valid for three years.
RPA PCRL: Remotely Piloted Aircraft (drone), Pilot Chemical Rating Licence
PCRL for remotely piloted aircraft
Any person who pilots an RPA (drone) to carry out aerial spraying in Victoria must hold a Pilot (Chemical Rating) Licence (PCRL) issued under the Agricultural and Veterinary Chemicals (Control of Use) Act 1992, which specifically authorises aerial spraying from a RPA.
The RPA PCRL application fee as at 1 July 2021 is $338.15 and the licence is valid for three years.
If you are the pilot in command of an aircraft and you have the required authorisation from CASA to carry out aerial distribution of agricultural chemicals, you can apply for a pilot chemical rating licence. This licence is issued for either a 1 or 3 year period, which you nominate when you apply.
If you are the sole pilot in command, carrying out aerial distribution in your own aerial distribution business you will also need to apply for an aerial distribution contractor licence. This licence is issued for either a 1 or 3 year period, which you nominate when you apply.
If you operate an aerial distribution business and employ or engage several pilots to carry out aerial distribution on behalf of your business, you will need to apply for an aerial distribution contractor licence in the name of your business. All pilots carrying out aerial distribution for the business are required to be licensed. This licence is issued for either a 1 or 3 year period, which you nominate when you apply.
Step 4: get a remote pilot licence (RePL). About $1500-2500 , and 3 days online form home, plus 1-2 days face to face , depending on which training company you choose. DFH subsidises these costs for customers who purchase their spray drone with us. For more information please contact the DFH ag. team on 1300 029 829 or [email protected]
Note that if you have the DJI T10, you can skip Step 4: remote pilot licence (RePL), because the T10 is the only one that is less than 25kgs – its falls into a different CASA category.
Important notes to remember:
There are no CASA authorisations required to conduct spraying operations when operating one drone on your own land besides the RePL and so long as you remain within the standard operating conditions.
The above rules are for when flying on your own property (not being paid to fly).If flying on other people’s property (typically being paid to fly), you will need to add a Type Rating (also called an endorsement (about $1,100.0) , and have a Remote operators certificate ReOC (about $2,000.0). DFH also subsidises these costs for customers who purchase their spray drone with us. For more information please contact the DFH ag. team on 1300 029 829 or [email protected]
Always adhere to the drone safety rules (standard operating conditions) – these apply to all operators.
You may have noticed the T50 has 2 pairs of rotors (not just 1), stacked on top of each other , at the end of each arm.
There is a correct amount of propeller surface area needed , proportionate to the weight of the aircraft , to create sufficient thrust / lift . This can be achieved by adding more rotors (coaxial) or making each rotor larger (regular quad / octocopter ).
Here are some implications of each design:
1. Updraft and drift The MTOW (max take off weight) for the T50 is 103kg. If the MTOW of another aircraft is higher (let’s say 110kg for instance) , it needs more thrust , which could potentially mean more updraft of spray droplets and may lead to more spray drift.
2.Torsional strain with coaxial, the rotors spin opposite directions, containing and balancing the torsional strain at each arm.
with a regular quadcopter, the torsional strain goes right through the airframe. so the airframe needs more heavy construction (usually equals more weight) to cope with this.
3. Stability The coaxial is also more stable and controllable , especially in a gust of wind. This creates much better yaw stability. that’s because the airspeed is much higher going through the coax props than a regular quadcopter.
4. Redundancy and safety With more rotors, if some of them get damaged , the other ones may be able to still mean the aircraft can come down slowly and in control ( and less likely crash). With only 4 pairs of rotors, if one of them is damaged badly enough, the aircraft will very likely lose control and crash.
One Indiana farm family is making the most of constantly evolving precision agriculture technology to help them be successful. The poynter family of Putnam County used to hire spray planes to apply fungicides. When their oldest son, Noah, gained experience with drones, they found they could reach more of their crop and save money in the process.
They now use two of their own drones to spray fungicide on all their corn. They also do some spot-spraying.
"Before, when we were using spray planes, there were 500 acres on rotation that could not be reached because of obstacles that stood in the plane's way," Noah Poynter says. That's what prompted the family to make the switch to drones.
"Spray planes can be something hard to come by," says John Evans, assistant professor of agricultural and biological engineering at Purdue.
How drone use started
"It started out as creating videos for my mom for Ag Day," Poynter recalls. He got his first drone in 2015, and has used numerous models throughout the years. One of the ways he's used his drones is to take videos and pictures. He produces videos and pictures for his business. Noah Poynter Media. He collaborates with different ag companies and even Purdue's College of Agriculture on some events.
Poynter and his brother got licenses to spray with their drones in 2022. Poynter then started using his drone in 2022 to spray fungicide on their corn.
After the poynters started using drones, they found they were saving money.
"With drones, your window of operation can be better; you don't have to wait for the ground to dry," Evans says
"Using drones works very well for us," Poynter says. "We do not have to pay someone and can now get fungicide on corn that has never seen it before."
He says this is something that they will keep doing. Right now, the family has the largest drone available for spraying.
Serious sprayers
The Poynters have two DJI Agras T40 drones, which are 220 pounds at take-off, poynter says
Evans explains that drones can compete with ground sprayers and spray planes because they make it possible to cover more acres in one day.
In addition to applying fungicide on all their corn, Poynter does some custom application for a few neighbours and family friends.
After two years of spraying with the drones, the Poynter family has seen better results. “The drones are more consistent across the whole field; they are able to maintain a more consistent height above the crops without having to pull up like a plane would,” Poynter says.
Purdue is starting to research how drones will economically impact farmers in the future, Evans notes.
Poynter says they can get all their corn sprayed in about a week. The DJI T40 has a 10.5-gallon tank. Poynter and his family can spray 500 acres on a good day.
“We crossed 40 acres per hour in a good running field,” he says. He gets around 5 acres sprayed on one tank, depending on the rate he flies the drone.
Poynter may have started this practice on the farm by getting the drones, but it takes the whole family to make their operation run smoothly. Each person plays a part in spraying. Poynter and his brother, Jonathan, control the drones while their dad mixes and fills them with chemicals. Poynter’s mom changes batteries.
Passion for Ag
Poynter's involvement in 4-H and FFA contributed to his passion for working with people in agriculture. He really enjoys working with drones. He says it has allowed him to meet new people and teach them about drones as well.
Being a teacher of agriculture outside of the classroom has given Poynter a variety of opportunities, like speaking to a class at Purdue about drones. He also uses his experience advocating for ag and his family’s farm on his social media pages. Poynter enjoys selling drones as a brand dealer because he gets to give lessons and help people earn certification to fly their new drones.
“I really enjoy being able to help others get started with their own drones,” he says.
Using unmanned aerial vehicles (UAVs) could be a new tool in the biosecurity toolbox making pest control more targeted, safer and less invasive.
So says Scion’s plant protection physics and chemistry team lead Dr Justin Nairn, adding UAVs can fly closer to the target than a helicopter (about two metres versus 10m-plus) have a smaller footprint and fly slower so can be more precise.
The research comes two years since the discovery of the fall armyworm in New Zealand in February 2022 – the moth caterpillar threatening crops.
Nairn’s initial studies in March 2021 into the general efficiency of spraying with UAVs used fluorescent dye to investigate how UAVs performed in aerial spray operations in urban environments.
In February last year scientists trialled a key bio-insecticide for combating Lepidoptera moths.
While the trial findings are being finalised, Nairn says using UAVs for pest control is growing quickly as operational limitations like cost, weight and flight time are reducing with technology advances.
He expects climate change could increase the risk of invasive pests reaching New Zealand and affecting its multi-billion-dollar primary sector, so Scion researchers hope UAVs can provide a more efficient urban biosecurity solution.
Scion has been involved with pest incursion responses and field research in aerial spray methodology for decades – from a seven-year $65 million response to the painted apple moth in Auckland in 1999 to the ongoing battle against fall armyworm and managing myrtle rust – looking for new, more targeted ways to tackle pest and insect outbreaks.
Fast and effective pest control is vital to prevent pest and pathogen establishment, although there needs to be a balance between engaging communities ahead of incursion responses and the potential need for fast action, Scion social scientist Dr Andrea Grant says.
“If community concerns are not addressed and they have no opportunity to respond to planned operations, they may lose confidence and support for urban biosecurity operations in future.”
In aligned research, Grant ran focus groups looking at social and cultural considerations of UAV spraying which included social researchers, UAV researchers, Māori involved in forest protection and management, and forestry managers.
Participants identified social issues like human health, safety and ethics, professionalisation of UAV use, Te Tiriti partnerships, engagement and capability.
Grant and her collaborators also held a co-design workshop where participants noted the need to work with Māori alongside key agencies in research, policy, operations and ethical aspects of co-design.
Māori environmental not-for-profit Te Tira Whakamātaki was included in focus groups.
Chief scientist Dr Simon Lambert says much of the Māori economy is in the primary sector so highly reliant on the environment.
“Māori are increasingly aware of the vulnerability of their assets and cultural capital to biosecurity events and are not opposed to technological innovation but insist on early and ongoing engagement.”
Better Border Biosecurity (B3) is a multi-partner joint venture researching ways to reduce entry and establishment of new plant pests and diseases in New Zealand.
B3 Director Dr Desi Ramoo says Nairn’s research is an example of adapting existing technology into an applied biosecurity tool.
“We must be prepared with a number of solutions developed from Western science and mātauranga Māori to ensure we are ahead of the game and move from a reactive to proactive biosecurity system.”
Forest Owners Association biosecurity manager Brendan Gould says successful intervention relies on the ability to respond, but community impacts and implications need to be considered as part of the process of operational design.
He says engagement before an incursion is important but challenging when immediate action is needed.
Scion’s research allowed for pre-engagement to be considered. Nairn’s work was part funded by Better Border Biosecurity while Grant’s was part funded by Forest Growers Research Trust, and both received Strategic Science Investment
China is leading the way on using drones to spray arable crops, and the presence of Chinese drone giant DJI’s agriculture division at the Agritechnica event in Hanover showed it is keen to flex its muscle in a market where it sees huge potential.
Up to now, Europe has lagged behind the US and China, but the sight of drones spraying arable crops may be getting closer, with signs that Europe is opening up regulation to permit their use.
DJI Agriculture has so far sold about 200,000 drones for spraying, 80% of which are in China.
It brought two new agricultural drone models and some of its top team from China to Agritechnica last month to discuss its research and development work and its collaboration with regulators to make the technology more accessible.
Opening up
DJI Agriculture pointed to its latest annual Agricultural Drone Insight Report, published in August, which highlights a gradual opening up of regulation in Europe.
The EU Commission proposed an update to its Sustainable Use Directive in summer 2022, which will exempt some unmanned aerial vehicles from the 2009 law prohibiting aerial pesticide application.
This is because spraying drones – when used in conjunction with remote sensing technology to produce application maps – can be much more targeted and reduce overall pesticide use, which is a key goal for the EU’s Green Deal and Farm to Fork strategy.
Furthermore, the European Aviation Standards Authority ecently softened requirements for risk assessments when using a drone for a specific purpose such as chemical application, including lifting a 25kg weight limit, as long as it is within a maximum dimension of 3m.
Individual member states including Italy and France have already granted licenses for spraying of vineyards and orchards where steep slopes restrict access for ground sprayers.
Germany is also granting permission for agricultural drone use below 50kg.
In Switzerland, Agroscope, the country’s centre of excellence for agricultural research, has concluded that the environmental impact of using drones for spraying is similar to ground sprayers and has backed use of the technology.
Here in the UK, there is now a mechanism to get a permit for aerial spraying, with users able to submit application plans to the Health and Safety Executive for consideration.
The Health and Safety Executive is also leading a global partnership on how drones could be used to apply pesticides in the future.
This will help understand the risks to humans and the environment and adapt regulatory systems to better accommodate drone applications.
Positive outlook
All this paints a positive outlook for drone spraying operations in Europe, and DJI Agriculture’s Zhong Wing tells Farmers Weekly that drones can complement existing spraying technology very well.
In the short term, this will mostly be on difficult terrain and for spot spraying applications, but she says efficiency of drones, in terms of hectares covered, can already compete with a medium-sized 18m boom sprayer.
With relatively short flight times on existing batteries, this would require multiple drones, batteries, a fast charger, and well-trained operators to achieve constant flight.
“On the other side is efficacy. A drone creates a downwash, which is something unique [to the technology] and makes better penetration [of the crop canopy].
“If you are spraying a crop with a thick canopy like potatoes, the downwash of the drone will push the droplets [to the target] better, so in some ways there is a possibility to replace ground sprayers in the future,” she explains.
DJI Agriculture is working with research organisations globally, including Auburn University in the US, to improve efficiency, efficacy and drift control when using drones.
Data on the latter is key to maintain momentum in opening up regulation where adoption is behind regions like Asia, such as in Europe.
“From the technical side, there is a lot we can do to change the regulatory ecosystem, like reducing drift by enhancing downwash, adding agents into the solution, and improving the precision of the systems,” explains Zhong.
Advanced technology
The first of two new DJI Agriculture drone models, the Agras T50 has been available in China since last year and is the largest and most advanced agricultural drone DJI has produced thus far.
Superseding the T40, the quadcopter has a coaxial dual rotor design with 54in blades and high-power electronic speed controllers (ESCs).
This means it is capable of flying at faster speeds while carrying a liquid spraying payload of 40kg and spreading (fertiliser or seeds) payload of 50kg.
Following the lead of other agricultural drone manufacturers, the unit moves away from hydraulic nozzles and uses centrifugal nozzles to deliver chemical to the target.
These have a motor-driven disc that rotates at high speed, dispersing spray droplets by centrifugal force. Droplet size is regulated by the speed of the disc and the flow rate from pump to nozzle.
Flow rates have improved dramatically compared with previous models, with 16 litres/min and 24 litres/min possible with two and four nozzles, respectively.
Its twin pump system is now integrated into the spray module rather than the drone, which makes cleaning and maintenance more straightforward.
If applying solid materials, the spreading module has an upgraded motor with increased torque and a spiral flow channel spinner which it is claims spreads more evenly and smoothly than before at rates up to 108kg/minute.
Improved camera
Other upgrades see the T50 carrying an ultra-high-definition first person view gimbal camera for better image collection and a powerful obstacle sensing system. This uses two phased array radars and two dual binocular vision systems front and rear.
Better LED spotlights also improve abilities when working at night and its combination of surveying and product application is claimed to make it a complete drone solution.
The second new model is the Agras T25P, which trumps the T20P model, and is a more flexible and portable option aimed at precision applications carried out by a single pilot on smaller farms.
Payload is 20kg for spraying and 25kg for spreading and the T25P benefits from all the other upgrades of the T50 for improved operation.
Given the cost and current regulatory roadblocks, will many be investing in agricultural drones from DJI and others in the short term?
ISO Standard
Joanna Wang, DJI Agriculture’s policy manager, says a recently published international standard (ISO23117) will help drone makers comply with a set of minimum requirements for reducing the risk of environmental issues when using drones for spraying.
Once agricultural drone models have this ISO certification, it will inevitably encourage regulators to permit their use where the country recognises the ISO standard.
Another significant roadblock is the agrochemical approvals in Europe, as almost all product labels will not include aerial spraying with drones as a means of application.
Joanna says there might be two routes for the EU and other countries including the UK to take.
One would be to follow the model used by Asia Pacific countries such as China and Thailand, which decided to permit use of most products applied with ground sprayers for drones.
The other is to follow the lead of Japan and have a separate list of registered products for drones, individually approved by the country’s health and safety regulators.
This would be a very heavy workload for the relevant department, but may be considered necessary here due to the use of low water volumes – meaning higher concentration of chemical in spray solutions – associated with drone spraying, for example.
Drones have a growing range of useful applications, but there has been a lot of attention given to their increasing role in modern warfare. We can hope that individual military conflicts will come to an end, but there is one form of warfare that will probably never cease - the “war on weeds.” Drone-based technology is also being employed in that arena.
It has been famously said that a weed is just “a plant whose use have yet to be identified.” In fact there are certain intrinsically “weedy” species of plants which make a huge number of seeds, are really good and spreading into new territory, and which can establish a “seed bank” which insures that they will re-emerge year after year even if the weather or a farmer’s efforts suppress them in any given growing season. Weeds have also been a challenge for humanity from the earliest days of farming.
For most of human history the principle means of controlling weeds on farms has been through mechanical tillage of the soil with tools evolving from the hoe to the plow to the cultivator. Unfortunately, the process of tillage degrades soil health over time and leads to phenomena like the Dust Bowl of the early 20th century. Chemical herbicides (particularly in combination with herbicide tolerant crops) have enabled more and more modern farmers to protect and improve their soils by using “no-till” and “strip-till” farming methods. For many crops and regions those minimum tillage systems are a foundational component of “Regenerative Agriculture” which is becoming the “gold standard” for environmentally-friendly and climate-smart crop production.
Unfortunately, weeds are very good at evolving their way around almost any technology used to suppress them. Herbicide tolerant weeds are a growing problem in modern agriculture, and it is extraordinarily difficult and expensive to discover and develop new herbicides with new modes of action to overcome that resistance.
When a new invasive weed species or one that is herbicide tolerant first arrives in a given field, the farmer needs to know that it has arrived and eliminate it before it manages to “set seed” and become an entrenched problem. Farmers can go out and physically “scout” their fields for these invaders, but that isn’t really feasible at the necessary level of detail on the scale of modern farming. However, “intelligence gathering” about the weed status of a field is a perfect fit for a drone-based imaging, and that function is being taken to a new level of precision by a company called Sentera.
Sentera was founded in 2014 by Eric Taipale, who now serves as the company’s chief technology officer. The business most recently raised significant capital via a Series C round expansion in 2023. The goal of founders was to find agriculture applications for some of the ultra-high resolution camera technology they had worked with in other areas. The technology they developed was a device that is light enough to transport on a small standard drone, but which includes 5 cameras, each of which detects a different wavelength of light. The system self-calibrates for the solar conditions during use. This unit can be flown over agricultural fields covering 260 acres or more per hour and capturing images down to a ¼inch resolution at the rate of 5 frames per second.
Sentera developed an extensive database connecting this kind of image with information about the weeds and other plants that are found in fields. That data was used to build a system that enables weeds to be identified to the species level even as young seedlings and map their exact location in a field. That data can then be used to develop a prescription for precision spray equipment which can then apply a set of specific herbicides with each one only used on the parts of the field where it is needed.
The total amount of herbicide needed can be reduced by up to 70%. That savings makes it possible to include products that might be too expensive or represent a risk of off-site drift if they were applied as a blanket spray across the field.
This technology will not only save farmers money, but it will also help to maintain optimal regenerative practices such as continuous no-till.
Drones are one of the fastest growing segments for applications of crop inputs. Iowa City, Iowa-based Rantizo, a manufacturer and provider of drone crop spraying systems recently announced $6 million in Series A funding. Led by Leaps by Bayer, with Fulcrum Global Capital and Innova Memphis, this round will allow the new executive team to lean into a new growth strategy for Rantizo, according to a release about the funding.
“Our vision is to build a service network that puts autonomy to work in agriculture, starting with spray drone services. We are excited to expand our nationwide operator network, deploy our work management and as-applied map software, and continue our exponential growth in acres treated,” said CEO Mariah Scott.
Given the interest in drone technology, it’s not surprising, many along the supply chain have questions about how these tools can help deliver the latest formulations. We reached out to Zach Hanner, Trial Manager with Rantizo, who provided responses to many of those questions.
ABG: What about the application quality in 3D crops (orchards, vineyards), where droplets released from above cannot reach the sides, inside fruits or bottom part of the leaves of the crop? This is still not being accomplished.
Zach Harris: Drones have been utilized in 3D crops successfully for a few years now, and there are a lot of success stories out there. With this type of cropping system, it takes a bit more skill and experience to successfully spray, but drones are an effective technology for these situations. Our lineup of DJI equipment can be configured to an “Orchard” mode so that the nozzles are oriented more out to the side to achieve more leaf contact to the interior of the plant’s vegetation. The biggest advantage for the drones is that they can fly between the rows and at a lower altitude than other aircraft, so the spray point of origin is happening mid-canopy rather than from the top.
ABG: How are drone operators getting connected with acres to spray? Do you think a company like Rantizo will see success in being a connector?
ZH: Rantizo currently supports our contractors in this exact way. We have great relationships with industry partners as well as ag retailers and universities. When we receive an inquiry or request for drone spraying services, we pass that along to our contractors. Because of our great reputation in the ag industry, we receive a lot of requests. This translates into more work for our contractors, and growth of the ag drone industry as a whole.
ABG: We are using satellite and drone technology to monitor, measure, and memorialize the efficacy of our product (an endophytic fungus, which is applied through irrigation) in leafy greens and processing tomato in California. Do those in the drone industry have any examples of others doing this? Or where field sensors work in conjunction with aerial imaging technology?
ZH: Spraying drones and imagery drones have a symbiotic relationship in modern agriculture, and there are many use case scenarios where we have coupled remote sensing and imagery with a chemical application. Imagery drones can help us identify target areas within a field, and they can also help us validate and document the efficacy of an application. For our work specifically at Rantizo, we prefer to work with drone imagery over satellite imagery. We typically do not get the resolution we need from satellite imagery to dictate a precise spraying area, or to analyze an application. It will be interesting to see how additional sensory equipment can be paired with spray drone technology in the future.
ABG: Regarding quality on 3D crops, do you have any scientific data proving that quality? Because from what I see it’s not the case. I am not against drone application, quite opposite, but we still need to do some work.
ZH: Rantizo has been leading the ag market with R&D and testing of spray drones in U.S. agriculture. Our initial footprint of operations was very concentrated in the North American corn belt, and we spray a lot of corn and soybean row crops. Knowing that these cropping systems were making up the majority of our applied acres, we focused our R&D efforts on these systems to make sure that our equipment achieved the best application possible. A lot of that R&D data translated across to other cropping systems, but we recognized the need for specific data in systems like 3D crops. We are growing across the U.S., and our drones are being used in a wide variety of cropping systems, and we are transitioning our R&D focus to address these systems specifically. The challenge is that we are a small team, and quality R&D data takes time. However, we are optimistic that we will have substantial 3D cropping data in the near future.
ABG: How far away in time is the real-time weed identification for spot spraying with drones? I believe it is a key feature to reduce cost and environmental impact of weed control.
ZH: This concept is actively happening in the U.S. market today and we have seen promising results. One of our goals is to reduce pesticide use where possible, and to focus operations on where an application is needed. Our drones can spot spray parts of an entire field with ease, but the key component of that process is that we need to know where the spray areas are. We have worked with imagery drone partners for proof of concept, and there is traction for this strategy to work. Real time weed emergence, identification, and density has been an agronomic dream for years, and the AI systems that are on the market right now are nearing day-of results.
ABG: What is the cost of use of drone spraying – USD per Ha or acre?
ZH: As with any custom application, pricing will be dictated by the local market, the cropping systems, and competitive application equipment and methods. We have contractors all over the U.S., and each local market is unique. On average, we have seen row crop spraying ranging from $15 to $30 per acre.
ABG: Are drone swarm applications being developed? How complex would be an application like that?
ZH: Swarming technology has been around since 2019 in the U.S., and we have utilized this technology in our operations. All the drones we currently offer are capable of swarming, but our biggest hurdle is getting approval from the FAA to conduct swarming operations. We have multiple requests pending with the FAA at the moment, so it is just a matter of time before we get approval. Swarming does induce added complexity to a spray operation. One pilot, with one remote control, can hypothetically swarm up to three aircraft. Each machine needs to be monitored and tendered, so a pilot must be hyper vigilant during the operation. For one person, it is a lot to monitor and manage at one time. Swarming usually requires a good pit crew to help reload drones with spray solution and change batteries so the pilot can stay focused on flight operations. An additional note, the FAA requires each drone to have a visual observer, so for the example of a pilot with three drones, there would have to be three visual observers during the operation.
ABG: Have drone applications been considered for seedling applications yet?
ZH: We have been seeding with our drones since Rantizo’s inception, and we have had great success in broadcasting cover crops. There are other companies in the drone industry that are utilizing drones for dispersing tree seedlings for habitat restoration after fires, and groups that have developed unique drone components to shoot specialized seed pellets from an air cannon to encourage the pellet to penetrate the soil.
ABG: Is there a strong urgency for more ruggedized drones? For example, to fly and use the drone in higher wind or light rain? Or is drone use limited to fair weather use since there are limited uses for current time?
ZH: The drones we currently use can withstand light rain and they can operate in winds of 30 mph. They are much less sensitive to the environment compared to imagery drones. With each new iteration of the equipment, we have seen improvements in ruggedness but the limiting factor for our fair-weather operations is because we are dispensing a product from the drone. For pesticides, we must adhere to the ranges of operation set by pesticide label. The drone may be able to handle a 30-mph-plus wind, but we would be off label for a pesticide application. Even in situations where we are not spraying pesticides, we are still focused on achieving a proper and adequate application. If the environmental factors are not conducive to a good application, then we will ground the equipment until we know we have better conditions.
ABG: Can drones apply both a broadcast application (nutrition/biological) simultaneously with a spot application (seed control) across the same field?
ZH: Currently our drones can only apply one product or solution at a time. The challenge is that we have a limited tank capacity and limited carry capacity with the equipment. I can see the ag drone industry going in that direction in the future, but as of today we are limited to one type of application at a time.
I'm the co-founder and manager of the business and I'm Oscar. I'm the head of agriculture and the manager at the service centre.
Nick
We're here to talk about the T-50. It's DJI's new agricultural spray drone. We'll be going through some of the features of the aircraft of course and all the other accessories and things that you get with it and we believe it's the best spray drone currently available in Australia and Drones for Hire is an authorised dealer for DJI and we have an agricultural DJI approved service centre and we've been operating for 10 years and we're very excited about this new spraying and spreading drone and we think it's going to make a big difference to Australian agriculture.
What makes it distinctive is you can tell by the huge radar at the front of course and also the white propellers make it distinctive compared to the the other predecessors as well. What you get when you purchase a T-50 is of course the aircraft. It comes standard with the liquid tank and then as an optional extra which most people do choose is the hopper or the spreader.
So it's used for things like fertiliser, seeding, baits, urea, all those kinds of things. Very very useful extra add-on for the T-50 and really gives the aircraft a whole new purpose for a marginally higher cost than than the standard kit. So it's the aircraft of course, standard with the liquid tank, optional spreader and then the three batteries here.
These are the DB1560 batteries for the T-50 and this is the charging station. So that's the C8000, the two 15 amp charging leads of course and a few small accessories here which is just the battery that goes in the back of the controller. So the controller is up here, very nice big screen, by far the best controller that you can get for basically any drone.
Very very user-friendly, very smartly laid out software, nice bright screen, very large, easy to see, easier to plan out your missions and select different settings and so forth. So that small WB37 battery goes inside the controller. It also has an internal battery as well so the external WB37 charges the internal and so that's a redundancy system so you don't run out of power mid-flight of course.
Oscar
And then here you've got your charger, your 65 watt charger which will charge your controller and also your WB37 charger. They come in the package.
Nick
Yeah so that's what we call the standard kit, three battery kit and as I say most people go with the hopper just because it's an extra $2,000 roughly but adds a whole new purpose to the drone.
Oscar
If we have a look at the aircraft now, run through a few of the features. So with any spray drone you're going to have two basic aspects to it. You've got your flight systems and then you've also got your spray systems.
So your flight system is just the drone how it flies and then your spray system, like any other spray system, you're going to have a few basic features. You're going to have a tank, a pump and nozzles. We're going to start off with the flight system.
The first thing we'll look at here is our propulsion systems. These motors are basically the same as the T40 motors, no great improvements there and then we've got our ESCs which are our electronic speed controllers. They're a big upgrade on the T40 speed controllers.
Two sets of motors and ESCs on each arm. We'll go through some of the features of that. The coaxial operation there especially helps you out in the spray systems because we have different angles of each motor set which put different rotor wash down on droplets and create different spray patterns compared to some of the other options for your spray drones which just have flat, basically flat, propulsion systems.
Nick
Yeah, the layout and positioning of these motors and propellers is very deliberate and it's designed to create not only just, obviously not just a flying machine, so the propellers are generating lift of course but they're also designed to produce optimal spray patterns. So downward thrust and circulating vortices to achieve your swath as well. So these kind of non-uniform angles, let's call them, of the propellers and motors and arms is all very deliberate to try and get optimal spraying efficiency.
So that achieves wider swath and also good downward pressure to circulate the droplets coming out of the sprayers at the back here. Circulate them down and around and get all the liquid vapour stuck on the undersides of the leaves and all the different surface areas of the target and that it improves your spraying efficiency and the result of course.
Oscar
Yeah and that's where we get our chemical use reductions from with spray drones. It's in that the work that the rotors are doing, creating the vortices and spreading those droplets amongst the plant as Nick was saying. So the next thing we might look at is some of the obstacle avoidance and terrain tracking features.
That's where the T50 is really upgraded. So the obvious one is this great big rhino horn on the front. This is our new improved radar.
We've also got two sets of binocular visions on the T50. So there's one set up here and there's one set down here. This is very similar to the T40 setup and then we've got this added set above upwards and forward detection.
Probably the most exciting feature of the terrain following obstacle avoidance is around the back here in the rear radar. So this is our rear radar which you can see is pretty well exactly the same as the front radar and it's mounted in a position which gives us a really good under aircraft spread for our terrain tracking and also for our obstacle detection. If we compare that to the old T40 radar this is a T40 rear radar and then if you also have a look at the position where that T40 radar sat which was up here now once the battery's in you've got the battery coming down here so you've got a blind spot in your radar.
Now with the T50 radar it's unimposed and it's massive.
Nick
Yeah so the rear radar is also an active phased array radar as is the front one so they're both active phased array and the two upgraded radars combined with the binocular vision system that's been doubled as Oscar was saying all combined to create a very strong perception system for the drone so it improves the drone's ability to essentially perceive what's around it so that's you know undulations or ground height changes, trees of course, obstacles, power lines, dams, structures, anything like that. This T50 compared to other spray drones is particularly good at doing that at being able to see what's around it and move more smoothly around things and just behave more efficiently as a result because it's not stopping and starting as much and it's seeing obstacles in the lay of the land more effectively and faster than other spray drones can so that's obviously safer, it's more efficient with as far as battery power usage and it's just smoother and better to fly as well.
Oscar
So this is your T40 radar and you can just see just to give you a bit of visual comparison the difference in those significantly bigger.
Nick
So some spray drones that don't have that perception system that we were just talking about they might be okay for broadacre spraying where there's no trees it's just big wide open flat areas and crops like any crop like wheat, cotton for example, it's very easy conditions for a spray drone to behave well in. This T50 can be used in just as easily in hilly country so obstacles, steep terrain, rocky, lots of complicated terrain, it's designed to be very effective in weed spraying and spot spraying in those hilly difficult areas as well as do the broadacre so it really has a dual purpose compared to quite a few of the other spray drones that are available.
Oscar
And the thing that we found in regards to that complexity of terrain, while you might have a clean flat field the density of a crop having patches through it or areas that have been missed or that are just sparse can create a really complex terrain for a drone. So you can have a radar that's seeing through certain densities of crop and that changes from being a nice flat field to having undulations and sometimes you know 90 degree walls of thick crop will basically be like this you know flying into a 90 degree brick wall. So while a broadacre with a nice low pasture is going to be easy for these drones with not as a higher perception system in it, even that crop once it grows up and becomes more dense and that density is sparse or patchy that then becomes a complex terrain.
So it's another factor to consider about complexity of terrain that you need to consider it from the drone's point of view.
Nick
The other big difference in addition to the perception system upgrade with the T50 is the spraying system. So the back here we've got the same centrifugal rotary style nozzles there at the back and the improvement I'm talking about is a flow rate increase from 12 litres per minute maximum flow rate for the T40 which is the aircraft just there behind Oscar up to a maximum of 24 litres per minute. So there's upgraded pumps as well on the back of the tank here.
So these pumps have been upgraded to achieve that 24 litres maximum per minute flow rate and currently as it is this one will do 16 litres per minute and you can get up to 24 by adding two extra spray nozzles so that's these two black the black spray lances there. You can actually have an optional accessories kit which adds two more to the front arms as well and that gets the flow rate up to 24 litres a minute. So you have an aircraft which is essentially sensing its environment much more effectively and behaving more confidently in both broadacre and complex terrain and also a aircraft which is which is outputting liquid much faster so you can you can achieve more hectares or weeds sprayed per day and you can have a drone which is more confidently behaving and moving around complex terrain.
So some very important very useful upgrades from DJI with the T50.
Oscar
The other one of the other features on the spray nozzles is they've got a solenoid down at the nozzle which will shut off when spraying stops. So the old T40s had a centrifugal system which when it started spinning would would drop down and open up. These ones just have a direct solenoid up here which will just shut off and so we shouldn't get some any dripping on that sort of thing.
I think some of the other things that that I've noticed anyway that I'm excited about is you've got this extra latch here on the arms for security so when the arm is closed up you click it shut but then it can't open without you pushing the latch. There's better accessibility it looks like to the front control systems and same with the back with just two screws and then a hinge. You've still got your FPV camera there obviously which is another big feature with the the big remote control it allows you to really utilize that especially if you're doing weeds impartial or some of those more tricky spray jobs where you might be further away and and just want a little bit of extra help.
Battery obviously goes in the back here you've got your dual RTK antenna like a T40 which gives you well if you're running a base station you know 10 mil accuracy up to 10 mil accuracy.
Nick
The other thing I was going to say just adding about the camera here is this camera is for just situational awareness so you can see what the drone sees as it's moving around of course. If you're over a weed like a blackberry patch for example you can just rotate a wheel on the controller and actuate that camera down and then you can see exactly what's beneath the drone and then turn the sprayers on to manually spot spray patches of weed. It also can work or does work as a mapping drone as well so whilst it's a very big mapping drone you can do up to 15 hectares per battery as a mapping drone so basically the way you do it is you just keep the tank empty to keep the aircraft light and then put it into a mapping mission and it'll go back and forth just the same way a Mavic 3 Enterprise or a Mavic 3 multispectral would and it's taking photos as it as it moves through the sky just like a lawnmower in the sky going back and forth taking photos and then it will pre-map the terrain that you're about to spray and yeah it is limited to 15 hectares per battery so it doesn't replace a mapping drone but it is useful when you're out in the field you need to pre-map before you do any spraying and you don't have a mapping drone with you or you don't own one and you know you can do all the prescription mapping and the instructional settings and things inside the controller so you don't need a laptop you don't need a mapping drone you can just use this T-50 as a mapping drone from time to time for fairly small areas that you need to map at a time.
Oscar
I was just looking at another feature here that I hadn't really taken much notice of but the the wires that are running through the arm rather than running through and then round a fairly sharp corner they've now got this nice bit of conduit or plastic covering and then they bring it into a little guard there so that looks like a nice addition.
Nick
The other thing is these little black antennas here they're RF antennas there's actually four of those on the aircraft there's two here and then there's two at the back as well so if you wanted to come around and have a look at where they are basically wherever you're standing with the controller there'll always be line of sight between the controller antennas and the four antennas on the aircraft.
Oscar
So there's our two rear antennas in the back so the idea here is that you've got antennas at the front and the rear to give you full connectivity no matter which way the aircraft's facing.
Nick
So if you've got the controller in your hand no matter which way the aircraft's orientated there's always well there's a much better chance of one of the antennas being a connected line of sight to the controller so essentially a stronger connection between the aircraft and the controller. So yeah so that's the T-50 there's a lot more we can say but they're some of the big improvements that we've noticed on the other spray drones and also on the T-40 and speaking of which this is a T-40 over here.
Oscar
It is interesting to note the size difference I think Nick like the the footprint the the frame the airframe is pretty well the same with the T-50 and the T-40 the legs that we make the wheels fit on the same the yeah onto the the heights are pretty similar to the T-50 slightly higher but we actually haven't tested it in our box yet but from measuring it up it should fit into our system that we already have for the T-40.
So if you've got a trailer set up with a T-40 or a back of the ute system the new aircraft should slide straight into the to the old boxes which is pretty good.
Nick
The hopper is an extra five litres on the T-40 hopper so that's 75 litres capacity for the hopper.
Oscar
Well I think the spray nozzles are you know significantly different when you look at the two just having that that larger structure to the the stem and the solenoid but the actual centrifugal motor and that whole system is pretty well the same.
Nick
And you can set on the controller just looking at that the rotary spinner at the bottom of the spray lens you can set that up to 500 microns the same as the T-40 as far as droplet size and there's also two different spinner types as well isn't there there's the yeah and there's a single layer and there's a couple of aftermarket options to get a tighter swath that that'll still fit on the T-50.
Oscar
Obviously we've been through the radar significantly smaller radar on the T-40 the rear radar has had a massive upgrade and then the binocular vision being your two binocular visions here as opposed to your four on that.
Nick
And then we have the fly cart over here as well so this is the fly cart 30. So this is a different a different animal again you'll notice it has a lot in common with the T-50 it is appears to be a modified T-50 essentially but it's designed for deliveries so delivering anything food emergency supplies medical supplies tools whatever you like so it's got a takes two batteries so for a longer flight time two batteries also for redundancy as well so it's got a had a battery failure you've got the other one to keep you going which is unexpected but it's possible.
Oscar
It's also got the parachute on it so if you have a failure when you're flying over a dangerous area has the the parachute to bring it down safely same radar same obstacle avoidance systems and everything this one's fitted with a winch if you see down here it's a winch system and I think is it 20 meter cable on the winch and you can also swap out the winch system for a
Nick
sort of large cargo box so the cargo box you can put things into it which has a weighing system like scales in it up to 30 kilo capacity so that's why it's called fly cart 30.
Oscar
30 being the kilos it can carry same with on the winch you can carry a load of 30 kilos
Nick
yeah so very very interesting new aircraft from DJI very useful in lots of different scenarios especially for basically any areas where you need to move items from point to point where it's difficult terrain so hilly mountainous areas slow roads you know dirt tracks or very slow roads so anywhere where you've got slow vehicle access or no vehicle access very useful new addition from DJI. So there you have it so they're the yeah the T-50 obviously being the sort of most exciting new addition for us as DJI agriculture dealers a lot of drones for hires focus with hardware is on agriculture now with our service center and our network of contractors and you know we have quite a well-established network for support now for Agras and for setup days and parts supply and all that kind of thing we feel very confident about being able to support this this new T-50 properly for customers and you know we we like to continue being DJI supporters and sellers because we feel that DJI compared to any of the other manufacturers is a very sound company very large organization well resourced extremely good R&D department a lot of engineers just a very strong and well-developed organization for drone manufacturing and you know for things like resolving issues for firmware updates just the sheer engineering and design of the system and you know the layout of the arms and the way it's designed as a spraying system not only just a just a not only just for lift but also for optimal spraying of course which is what it's all about we just feel very confident and comfortable with with DJI and we're looking
Oscar
forward to new models coming out we hope you've this has helped you have a quick look at the T-50 our first look has been really exciting too some really exciting features the obstacle avoidance the ESC's some of those upgrades we're really looking forward to testing in the field and we
Nick
also realized that for a lot of our customers be it growers or contract sprayers it's usually their first spray drone so you know the the need for support and for education is particularly high and we're designing our business to be as supportive as possible for customers yeah so if you would like to reach us our website is drones for hires d-r-o-n-e-s-f-o-r-h-i-r-e.com and phone number is 1300 029 829 thanks for watching